Title: | Scaffolding Interfaces to Packages in Other Programming Languages |
---|---|
Description: | Comprehensive set of tools for scaffolding R interfaces to modules, classes, functions, and documentations written in other programming languages, such as 'Python'. |
Authors: | Yuan Tang [aut, cre, cph] , JJ Allaire [aut], Kevin Ushey [aut], RStudio [cph], Navdeep Gill [ctb], Erin LeDell [ctb] |
Maintainer: | Yuan Tang <[email protected]> |
License: | Apache License 2.0 |
Version: | 0.0.1 |
Built: | 2024-10-29 04:01:23 UTC |
Source: | https://github.com/terrytangyuan/scaffolder |
This function can be used to generate R wrapper for a specified
Python function while allowing to inject custom code for critical parts of
the wrapper generation, such as process the any part of the obtained docs
and append additional roxygen fields. The result
from execution of python_function
is assigned to a variable called
python_function_result
that can also be processed by postprocess_fn
before writing the closing curly braces for the generated wrapper function.
custom_scaffold_py_function_wrapper( python_function, r_function = NULL, additional_roxygen_fields = NULL, process_docs_fn = function(docs) docs, process_param_fn = function(param, docs) param, process_param_doc_fn = function(param_doc, docs) param_doc, postprocess_fn = NULL, file_name = NULL )
custom_scaffold_py_function_wrapper( python_function, r_function = NULL, additional_roxygen_fields = NULL, process_docs_fn = function(docs) docs, process_param_fn = function(param, docs) param, process_param_doc_fn = function(param_doc, docs) param_doc, postprocess_fn = NULL, file_name = NULL )
python_function |
Fully qualified name of Python function or class
constructor (e.g. |
r_function |
Name of R function to generate (defaults to name of Python function if not specified) |
additional_roxygen_fields |
A list of additional roxygen fields to write
to the roxygen docs, e.g. |
process_docs_fn |
A function to process the obtained docs. |
process_param_fn |
A function to process each parameter needed for
|
process_param_doc_fn |
A function to process the roxygen docstring for each parameter. |
postprocess_fn |
A function to inject any custom code in the form of a string before writing the closing curly braces for the generated wrapper function. |
file_name |
The file name to write the generated wrapper function to. If
|
library(tensorflow) library(stringr) # Example of a `process_param_fn` to cast parameters with default values # that contains "L" to integers process_int_param_fn <- function(param, docs) { # Extract the list of parameters that have integer values as default int_params <- gsub( " = [-]?[0-9]+L", "", str_extract_all(docs$signature, "[A-z]+ = [-]?[0-9]+L")[[1]]) # Explicitly cast parameter in the list obtained above to integer if (param %in% int_params) { param <- paste0("as.integer(", param, ")") } param } # Note that since the default value of parameter `k` is `1L`. It is wrapped # by `as.integer()` to ensure it's casted to integer before sending it to `tf$nn$top_k` # for execution. We then print out the python function result. custom_scaffold_py_function_wrapper( "tf$nn$top_k", r_function = "top_k", process_param_fn = process_int_param_fn, postprocess_fn = function() { "print(python_function_result)" })
library(tensorflow) library(stringr) # Example of a `process_param_fn` to cast parameters with default values # that contains "L" to integers process_int_param_fn <- function(param, docs) { # Extract the list of parameters that have integer values as default int_params <- gsub( " = [-]?[0-9]+L", "", str_extract_all(docs$signature, "[A-z]+ = [-]?[0-9]+L")[[1]]) # Explicitly cast parameter in the list obtained above to integer if (param %in% int_params) { param <- paste0("as.integer(", param, ")") } param } # Note that since the default value of parameter `k` is `1L`. It is wrapped # by `as.integer()` to ensure it's casted to integer before sending it to `tf$nn$top_k` # for execution. We then print out the python function result. custom_scaffold_py_function_wrapper( "tf$nn$top_k", r_function = "top_k", process_param_fn = process_int_param_fn, postprocess_fn = function() { "print(python_function_result)" })
Scaffold R wrappers for Python functions
scaffold_py_function_wrapper( python_function, r_function = NULL, file_name = NULL )
scaffold_py_function_wrapper( python_function, r_function = NULL, file_name = NULL )
python_function |
Fully qualified name of Python function or class
constructor (e.g. |
r_function |
Name of R function to generate (defaults to name of Python function if not specified) |
file_name |
The file name to write the generated wrapper function to. If
|
The generated wrapper will often require additional editing (e.g. to
convert Python list literals in the docs to R lists, to massage R numeric
values to Python integers via as.integer
where required, etc.) so is
really intended as an starting point for an R wrapper rather than a wrapper
that can be used without modification.
library(scaffolder) library(tensorflow) scaffold_py_function_wrapper("tf$nn$top_k")
library(scaffolder) library(tensorflow) scaffold_py_function_wrapper("tf$nn$top_k")
This package provides a comprehensive set of tools to scaffold interfaces to modules, classes, functions, and documentations written in other programming languages.