Package: dml 1.1.0.9001

dml: Distance Metric Learning in R

State-of-the-art algorithms for distance metric learning, including global and local methods such as Relevant Component Analysis, Discriminative Component Analysis, Local Fisher Discriminant Analysis, etc. These distance metric learning methods are widely applied in feature extraction, dimensionality reduction, clustering, classification, information retrieval, and computer vision problems.

Authors:Yuan Tang [aut, cre], Tao Gao [aut], Nan Xiao [aut]

dml_1.1.0.9001.tar.gz
dml_1.1.0.9001.zip(r-4.5)dml_1.1.0.9001.zip(r-4.4)dml_1.1.0.9001.zip(r-4.3)
dml_1.1.0.9001.tgz(r-4.4-any)dml_1.1.0.9001.tgz(r-4.3-any)
dml_1.1.0.9001.tar.gz(r-4.5-noble)dml_1.1.0.9001.tar.gz(r-4.4-noble)
dml_1.1.0.9001.tgz(r-4.4-emscripten)dml_1.1.0.9001.tgz(r-4.3-emscripten)
dml.pdf |dml.html
dml/json (API)
NEWS

# Install 'dml' in R:
install.packages('dml', repos = c('https://terrytangyuan.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/terrytangyuan/dml/issues

On CRAN:

dimensionality-reductiondistance-metric-learningmachine-learningmetric-learningstatistics

5.94 score 58 stars 1 packages 8 scripts 141 downloads 4 exports 8 dependencies

Last updated 1 years agofrom:68558d8b81. Checks:OK: 1 ERROR: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winERROROct 29 2024
R-4.5-linuxERROROct 29 2024
R-4.4-winERROROct 29 2024
R-4.4-macERROROct 29 2024
R-4.3-winERROROct 29 2024
R-4.3-macERROROct 29 2024

Exports:dcaGdmDiagGdmFullrca

Dependencies:latticelfdaMatrixplyrrARPACKRcppRcppEigenRSpectra